微积分学习笔记(二)隐函数求导

复合函数求导法则:

[F(x,y,z)]^\prime = (xyz)^\prime = x^\prime yz+xy^\prime z+xy z^\prime

规则是:分别把变量的导数与除该变量外其余部分相乘,然后把结果相加。

除该变量外其余部分就是该变量的偏导数,可得:

[F(x,y,z)]^\prime = x^\prime F_x+ y^\prime F_y+ z^\prime F_z

对于自变量为x的方程:

F(x,y)=0

等式两边同时对x求导:

x^\prime F_x+ y^\prime F_y = 0

整理可得:

\frac{dy}{dx} = -\frac{F_x}{F_y}

对于自变量为x的方程:

F(x,y,z)=0

等式两边同时对x求导:

x^\prime F_x+ y^\prime F_y+ z^\prime F_z = 0

对于自变量为x,y的二元方程:

F(x,y,z)=0

分别对x,y求偏导:

F_x+ \frac{dz}{dx} F_z = 0

F_y+ \frac{dz}{dy} F_z = 0

对于方程组

\left\{\begin{array}{l} F(x, y, z)=0 \\ G(x, y, z)=0 \end{array}\right.

先确定谁是自变量,这里x是自变量。
对x求导:

\left\{\begin{array}{l} F_x+F_y \frac{d y}{d x}+F_z \frac{d z}{d x}=0 \\ G_x+G_y \frac{d y}{d x}+G_z \frac{d z}{d x}=0 \end{array}\right.

解方程组即可求出 \frac{d y}{d x},\frac{d z}{d x}

对于方程组

\left\{\begin{array}{l} F(x, y, u, v)=0 \\ G(x, y, u, v)=0 \end{array}\right.

先确定谁是自变量,这里x,y是自变量。

对x求导可得:

\left\{\begin{array}{l} F_x+F_u \frac{\partial u}{\partial x}+F_v \frac{\partial v}{\partial x}=0 \\ G_x+G_u \frac{\partial u}{\partial x}+G_v \frac{\partial v}{\partial x}=0 \end{array}\right.

对y求导可得:

\left\{\begin{array}{l} F_y+F_u \frac{\partial u}{\partial y}+F_v \frac{\partial v}{\partial y}=0 \\ G_y+G_u \frac{\partial u}{\partial y}+G_v \frac{\partial v}{\partial y}=0 \end{array}\right.

解方程组即可求出 \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}

posted @ 2025/07/02 04:46:36