微积分学习笔记(八)多元函数微分学

一元函数微分 vs 二元函数微分

极限的等价无穷小和等价无穷大可以化简表达式,例如当 x \rightarrow 0 时:

\begin{aligned} \sin x &\sim x\\x^6+1-\cos x &\sim \frac{1}{2}x^2\end{aligned}

能不能用极限的这个性质来化简函数呢?可以!我们把函数划分成很多段,每段长度为 \Delta x ,当 \Delta x \rightarrow 0 时,我们就可以用极限的等价无穷小化简函数啦,这就是微分。积分是微分的逆运算,根据一个化简后的函数,求出化简前的函数。

一元函数微积分 多元函数微积分
image
image
函数增量 \begin{aligned} \Delta y &=(x+\Delta x)^{2}-x^{2} \\ &=2x\Delta x+(\Delta x)^2\\ &=A \Delta x+o(\Delta x) \end{aligned} \begin{aligned} \Delta z &=(x-\Delta x)(y+\Delta y)-x y \\ &=y \Delta x+x \Delta y+\Delta x \Delta y \\ &=A \Delta x+B\Delta y+o\left(\sqrt{(\Delta x)^{2} +(\Delta y)^{2}}\right) \end{aligned}
微分(原函数的等价无穷小) 将曲线化简成直线
dy = Adx
将曲面化简成平面
dz=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
积分 用直线求曲线
y = A\int dx
用平面求曲面
z=\int \int \frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
可微的充要条件 能写成"大头"和“零头”的形式就能用等价无穷小,从而可微,即导数存在 能写成"大头"和“零头”的形式就能用等价无穷小,从而可微,即:
\lim _ { \Delta x \rightarrow 0 \\ \Delta y \rightarrow 0} \frac { \Delta z - A \Delta x - B \Delta y } { \sqrt{(\Delta x)^{2} +(\Delta y)^{2}} } = 0

二元函数的极值

f\left(x_0+\Delta x, y_0+\Delta y\right)=f\left(x_0, y_0\right)+f_x^{\prime}\left(x_0, y_0\right) \Delta x+f_y^{\prime}\left(x_0, y_0\right) \Delta y\\+\frac{1}{2}\left[f_{x x}^{\prime \prime}\left(x_0, y_0\right)(\Delta x)^2+2 f_{x y}^{\prime \prime}\left(x_0, y_0\right) \Delta x \Delta y+f_{y y}^{\prime \prime}\left(x_0, y_0\right)(\Delta y)^2\right]+\ldots \ldots

(x_0,y_0) 是极值点,该点是驻点,所以

f_x^{\prime}\left(x_0, y_0\right)=0\\ f_y^{\prime}\left(x_0, y_0\right)=0

h(\Delta x, \Delta y)=f_{x x}^{\prime \prime}\left(x_0, y_0\right)(\Delta x)^2+2 f_{x y}^{\prime \prime}\left(x_0, y_0\right) \Delta x \Delta y+f_{y y}^{\prime \prime}\left(x_0, y_0\right)(\Delta y)^2

h(\Delta x, \Delta y)>0 ,说明 (x_0,y_0) 周围的点比 f\left(x_0, y_0\right) 大,则 (x_0,y_0) 为极小值。
h(\Delta x, \Delta y)<0 ,说明 (x_0,y_0) 周围的点比 f\left(x_0, y_0\right) 小,则 (x_0,y_0) 为极大值。

h(\Delta x, \Delta y) 可以整理成二次方程的形式:

h(\Delta x, \Delta y)=\frac{1}{2}(\Delta y)^2\left[f_{x x}^{\prime \prime} \cdot\left(\frac{\Delta x}{\Delta y}\right)^2+2 \cdot f_{x y}^{\prime \prime}\left(\frac{\Delta x}{\Delta y}\right)+f_{y y}^{\prime}\right]

A=f_{x x}^{\prime \prime}\\ B=f_{x y}^{\prime \prime}\\ C=f_{yy}^{\prime \prime}

B^2-AC<0 A>0 时, h(\Delta x, \Delta y)>0 .
B^2-AC<0 A<0 时, h(\Delta x, \Delta y)<0 .

方向导数与梯度

偏导数是沿着x轴y轴方向的导数,方向导数是沿着 \vec{\ell} 方向的导数。设

\vec{\ell}=(a, b)

单位化:

\overrightarrow{\ell^0} =\left(\frac{a}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right) =(\cos \alpha, \cos \beta)

方向的导数

\left.\frac{\partial z}{\partial \vec{\ell}}\right|_{\left(x_0, y_0\right)} =\lim _{t \rightarrow 0^{+}} \frac{f\left(x_0+t \cos \alpha, y_0+t \cos \beta\right)-f\left(x_0, y_0\right)}{t}

由二元微分:

\Delta z=f_x \Delta x+f_y \Delta y+0\left(\sqrt{(\Delta x)^2+(\Delta y)^2}\right)

\Delta x=t \cos \alpha, \Delta y=t \cos \beta 代入上式可得:

\begin{aligned} \left.\frac{\partial z}{\partial \vec{\ell}}\right|_{\left(x_0, y_0\right)}& =f_x \cos \alpha+f_y \cos \beta \\ & =\left(f_x, f_y\right) \cdot(\cos \alpha, \cos \beta)\end{aligned}

其中 (f_x, f_y) 又称为梯度。

posted @ 2025/07/14 03:55:28