微积分学习笔记(八)多元函数微分学

二元函数的极值

f\left(x_0+\Delta x, y_0+\Delta y\right)=f\left(x_0, y_0\right)+f_x^{\prime}\left(x_0, y_0\right) \Delta x+f_y^{\prime}\left(x_0, y_0\right) \Delta y\\+\frac{1}{2}\left[f_{x x}^{\prime \prime}\left(x_0, y_0\right)(\Delta x)^2+2 f_{x y}^{\prime \prime}\left(x_0, y_0\right) \Delta x \Delta y+f_{y y}^{\prime \prime}\left(x_0, y_0\right)(\Delta y)^2\right]+\ldots \ldots

(x_0,y_0) 是极值点,该点是驻点,所以

f_x^{\prime}\left(x_0, y_0\right)=0\\ f_y^{\prime}\left(x_0, y_0\right)=0

h(\Delta x, \Delta y)=f_{x x}^{\prime \prime}\left(x_0, y_0\right)(\Delta x)^2+2 f_{x y}^{\prime \prime}\left(x_0, y_0\right) \Delta x \Delta y+f_{y y}^{\prime \prime}\left(x_0, y_0\right)(\Delta y)^2

h(\Delta x, \Delta y)>0 ,说明 (x_0,y_0) 周围的点比 f\left(x_0, y_0\right) 大,则 (x_0,y_0) 为极小值。
h(\Delta x, \Delta y)<0 ,说明 (x_0,y_0) 周围的点比 f\left(x_0, y_0\right) 小,则 (x_0,y_0) 为极大值。

h(\Delta x, \Delta y) 可以整理成二次方程的形式:

h(\Delta x, \Delta y)=\frac{1}{2}(\Delta y)^2\left[f_{x x}^{\prime \prime} \cdot\left(\frac{\Delta x}{\Delta y}\right)^2+2 \cdot f_{x y}^{\prime \prime}\left(\frac{\Delta x}{\Delta y}\right)+f_{y y}^{\prime}\right]

A=f_{x x}^{\prime \prime}\\ B=f_{x y}^{\prime \prime}\\ C=f_{yy}^{\prime \prime}

B^2-AC<0 A>0 时, h(\Delta x, \Delta y)>0 .
B^2-AC<0 A<0 时, h(\Delta x, \Delta y)<0 .

posted @ 2025/07/14 03:55:28